Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

Identifieur interne : 000318 ( Main/Exploration ); précédent : 000317; suivant : 000319

Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.

Auteurs : Reiko Matsui [États-Unis] ; Yosuke Watanabe [Japon] ; Colin E. Murdoch [Royaume-Uni]

Source :

RBID : pubmed:28505880

Descripteurs français

English descriptors

Abstract

Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.

DOI: 10.1016/j.redox.2017.04.040
PubMed: 28505880
PubMed Central: PMC5430575


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.</title>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, USA. Electronic address: rmatsui@bu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine</wicri:regionArea>
<wicri:noRegion>Boston University School of Medicine</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine</wicri:regionArea>
<wicri:noRegion>Faculty of Medicine</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aston Medical Research Institute, Aston Medical School, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Aston Medical Research Institute, Aston Medical School</wicri:regionArea>
<wicri:noRegion>Aston Medical School</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28505880</idno>
<idno type="pmid">28505880</idno>
<idno type="doi">10.1016/j.redox.2017.04.040</idno>
<idno type="pmc">PMC5430575</idno>
<idno type="wicri:Area/Main/Corpus">000343</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000343</idno>
<idno type="wicri:Area/Main/Curation">000343</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000343</idno>
<idno type="wicri:Area/Main/Exploration">000343</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.</title>
<author>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, USA. Electronic address: rmatsui@bu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine</wicri:regionArea>
<wicri:noRegion>Boston University School of Medicine</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine</wicri:regionArea>
<wicri:noRegion>Faculty of Medicine</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aston Medical Research Institute, Aston Medical School, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Aston Medical Research Institute, Aston Medical School</wicri:regionArea>
<wicri:noRegion>Aston Medical School</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Disease Models, Animal (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione (metabolism)</term>
<term>Hindlimb (blood supply)</term>
<term>Hindlimb (chemistry)</term>
<term>Hindlimb (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Hypoxia-Inducible Factor 1, alpha Subunit (metabolism)</term>
<term>Ischemia (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Neovascularization, Pathologic (MeSH)</term>
<term>Neovascularization, Physiologic (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Vascular Endothelial Growth Factor A (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Facteur de croissance endothéliale vasculaire de type A (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Ischémie (métabolisme)</term>
<term>Membre pelvien (composition chimique)</term>
<term>Membre pelvien (métabolisme)</term>
<term>Membre pelvien (vascularisation)</term>
<term>Modèles animaux de maladie humaine (MeSH)</term>
<term>Néovascularisation pathologique (MeSH)</term>
<term>Néovascularisation physiologique (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Sous-unité alpha du facteur-1 induit par l'hypoxie (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Hypoxia-Inducible Factor 1, alpha Subunit</term>
<term>Vascular Endothelial Growth Factor A</term>
</keywords>
<keywords scheme="MESH" qualifier="blood supply" xml:lang="en">
<term>Hindlimb</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Hindlimb</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutathion</term>
<term>Membre pelvien</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hindlimb</term>
<term>Ischemia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de croissance endothéliale vasculaire de type A</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Ischémie</term>
<term>Membre pelvien</term>
<term>Sous-unité alpha du facteur-1 induit par l'hypoxie</term>
</keywords>
<keywords scheme="MESH" qualifier="vascularisation" xml:lang="fr">
<term>Membre pelvien</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Disease Models, Animal</term>
<term>Humans</term>
<term>Mice</term>
<term>Neovascularization, Pathologic</term>
<term>Neovascularization, Physiologic</term>
<term>Oxidation-Reduction</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Modèles animaux de maladie humaine</term>
<term>Néovascularisation pathologique</term>
<term>Néovascularisation physiologique</term>
<term>Oxydoréduction</term>
<term>Souris</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28505880</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2017</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.</ArticleTitle>
<Pagination>
<MedlinePgn>1011-1019</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(17)30133-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2017.04.040</ELocationID>
<Abstract>
<AbstractText>Mouse hindlimb ischemia has been widely used as a model to study peripheral artery disease. Genetic modulation of the enzymatic source of oxidants or components of the antioxidant system reveal that physiological levels of oxidants are essential to promote the process of arteriogenesis and angiogenesis after femoral artery occlusion, although mice with diabetes or atherosclerosis may have higher deleterious levels of oxidants. Therefore, fine control of oxidants is required to stimulate vascularization in the limb muscle. Oxidants transduce cellular signaling through oxidative modifications of redox sensitive cysteine thiols. Of particular importance, the reversible modification with abundant glutathione, called S-glutathionylation (or GSH adducts), is relatively stable and alters protein function including signaling, transcription, and cytoskeletal arrangement. Glutaredoxin-1 (Glrx) is an enzyme which catalyzes reversal of GSH adducts, and does not scavenge oxidants itself. Glrx may control redox signaling under fluctuation of oxidants levels. In ischemic muscle increased GSH adducts through Glrx deletion improves in vivo limb revascularization, indicating endogenous Glrx has anti-angiogenic roles. In accordance, Glrx overexpression attenuates VEGF signaling in vitro and ischemic vascularization in vivo. There are several Glrx targets including HIF-1α which may contribute to inhibition of vascularization by reducing GSH adducts. These animal studies provide a caution that excess antioxidants may be counter-productive for treatment of ischemic limbs, and highlights Glrx as a potential therapeutic target to improve ischemic limb vascularization.</AbstractText>
<CopyrightInformation>Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Matsui</LastName>
<ForeName>Reiko</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, USA. Electronic address: rmatsui@bu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Watanabe</LastName>
<ForeName>Yosuke</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Murdoch</LastName>
<ForeName>Colin E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>Aston Medical Research Institute, Aston Medical School, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>16/0005453</GrantID>
<Agency>Diabetes UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>R01 HL133013</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 AG051857</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1 TR001430</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516006">Glrx protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C497443">Hif1a protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051795">Hypoxia-Inducible Factor 1, alpha Subunit</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C467480">vascular endothelial growth factor A, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="Y">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006614" MajorTopicYN="N">Hindlimb</DescriptorName>
<QualifierName UI="Q000098" MajorTopicYN="Y">blood supply</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051795" MajorTopicYN="N">Hypoxia-Inducible Factor 1, alpha Subunit</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007511" MajorTopicYN="N">Ischemia</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009389" MajorTopicYN="N">Neovascularization, Pathologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018919" MajorTopicYN="Y">Neovascularization, Physiologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042461" MajorTopicYN="N">Vascular Endothelial Growth Factor A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Angiogenesis</Keyword>
<Keyword MajorTopicYN="Y">GSH adducts</Keyword>
<Keyword MajorTopicYN="Y">Glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">Ischemic limb</Keyword>
<Keyword MajorTopicYN="Y">Oxidants</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28505880</ArticleId>
<ArticleId IdType="pii">S2213-2317(17)30133-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2017.04.040</ArticleId>
<ArticleId IdType="pmc">PMC5430575</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Dec 31;274(53):38183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10608891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2014;76:39-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23988176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Dec 20;25(18):967-982</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27224303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2008 May 23;102(10):1182-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JCI Insight. 2016 Jun 2;1(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27358914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):524-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22010840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Oct 15;17(8):1099-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22472004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2011 Jan;50(1):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21074540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2010 Aug;30(8):1553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9751731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 3;274(49):34543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2015 Aug;35(8):1862-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26088573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 29;474(7352):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2015 May 22;116(11):e99-132</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25931450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2006 Nov;116(11):2955-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17053836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Aug 17;101(4):409-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Aug 15;41(4):562-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16863989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Sep 15;51(6):1249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21762778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 1997 Oct 21;96(8):2667-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9355908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2016 Sep;65(9):2553-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27284110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Mar 30;100(6):894-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cardiovasc Pharmacol. 2016 Jun;67(6):458-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26927696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Oct 15;49(7):1221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20638471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2007 Jul 15;75(2):220-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17451659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 27;282(17):12467-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Nutr. 2009 Sep;4(3):215-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19707810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2009 Nov;54(5):1043-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19770400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vasc Surg. 2003 Jul;38(1):198-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12844115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Oct 26;101(9):948-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17823371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2014 Jun 24;63(24):2734-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Oct 1;69(19):7626-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2000 Jul;2(7):423-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10878807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2005 May 10;111(18):2347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15867174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Jul;73(7):2275-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):E4458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25288734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Atherosclerosis. 2011 Aug;217(2):340-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21524749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2012 Apr 27;110(9):1217-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22456182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(12):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e34790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 20;270(3):1230-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2017 Mar 21;135(12):e686-e725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27840332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vasc Med. 2007 Nov;12(4):351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2004 Jul;287(1):H268-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2009 Apr;29(4):495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Oct;63:135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23685287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2011 Aug 9;124(6):731-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21788590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Oct 15;125(Pt 20):4751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22854047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Mar 21;289(12):8633-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24482236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1998 Jun 1;101(11):2567-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9616228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Dec;1842(12 Pt A):2489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Apr;11(4):791-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18783313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breast Cancer Res. 2015 Feb 22;17:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2004 Aug 3;110(5):637-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2010 Nov;30(11):2089-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2008 Jul 29;52(5):387-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18652948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 21;276(51):47763-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11684673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2014 Nov;76:275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25260714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2203-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21799178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2014 Feb;63(2):675-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24198286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10705-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8248162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2008 Jul 18;103(2):212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18583711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Apr 21;5(4):e10189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20422004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 1999 Jun 22;99(24):3188-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10377084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Apr 10;20(11):1693-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24053644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Dec 07;10(12):e0144025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26642319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2006 Aug;169(2):719-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2014 Aug;28(8):3351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24760754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2013 Feb 1;97(2):282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23129588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2006 Jul 15;71(2):226-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16781692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2006 Jan-Mar;10(1):45-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16563221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 May 24;113(21):6011-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27162359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Apr 13;26(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 2;284(1):436-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Jul 10;25(2):78-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27000416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2016 Oct;9:306-319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27693992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 20;292(5516):468-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2014 Jan 30;123(5):625-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24300855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2011;490:321-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Dec 20;279(2):324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Feb 1;277(5):3101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2010 Mar 1;85(4):785-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 25;278(17):14607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12556467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2009 Oct;29(10):1522-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19574557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2008 Feb;51(2):319-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18180403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2016 Sep;98:11-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27397876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2012 Nov 27;126(22):2589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23091063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2013 Jan 1;127(1):86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23204109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2002 Sep 1;33(5):575-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12208343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 18;289(29):19907-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2011 Jan 4;123(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21200015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2014 May 21;15(5):9036-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24853285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2014 Sep 9;130(11):902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24982127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ J. 2016 May 25;80(6):1278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27151566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ J. 2017 Feb 24;81(3):281-289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28123169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2006 May;16(4):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e57618</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23472092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2007 Sep;27(9):2050-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2011 Jun;31(6):1368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21415386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Matsui, Reiko" sort="Matsui, Reiko" uniqKey="Matsui R" first="Reiko" last="Matsui">Reiko Matsui</name>
</noRegion>
</country>
<country name="Japon">
<noRegion>
<name sortKey="Watanabe, Yosuke" sort="Watanabe, Yosuke" uniqKey="Watanabe Y" first="Yosuke" last="Watanabe">Yosuke Watanabe</name>
</noRegion>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Murdoch, Colin E" sort="Murdoch, Colin E" uniqKey="Murdoch C" first="Colin E" last="Murdoch">Colin E. Murdoch</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000318 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000318 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28505880
   |texte=   Redox regulation of ischemic limb neovascularization - What we have learned from animal studies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28505880" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020